DON’T EVER MAKE the mistake of longing for the good old days—at least not in medicine. If you were born 50 years ago, the chances are you’re alive today because you were born naturally strong and lucky. It isn’t likely that the medicine of that period did much to save you for medicine was just learning to be scientific, which is another way of saying effective.

If medical progress hadn’t advanced your life expectancy, last year you’d have been slated to die at the age of 49! In 1902 there were few diseases that could be cured; today there are few diseases that cannot be cured if treated in time.

Fifty years ago childhood diseases - diphtheria, scarlet fever, measles and whooping cough - were exacting terrible tolls. The doctors were nearly powerless. They had to let the diseases run their courses, keeping the patients as comfortable as possible. If children escaped these dread diseases, there was practically everything else in the book ready to ambush them before they grew up. The average age of adults dying in 1902 was only 30. Today this has been advanced to nearly 70!

Tuberculosis, malaria, pneumonia, syphilis, typhoid fever, typhus fever, diabetes, pernicious anemia, meningitis and cancer yearly claimed millions of victims even in “civilized” countries. Methods of antisepsis were not practiced as they are today; many patients died from infections contracted at the operating table; many died from shock.

Blood transfusion was almost unknown until 1912 and it was much later before it was generally practiced. Of course, such refinements as the matching of blood were little known; likewise, making counts of red and white corpuscles to diagnose disease, a practice now routine.

Vitamins were unheard of, the first being isolated around 1918. The first hormones - vital secretions of the ductless glands - had been used in treating thyroid deficiencies in 1891 but little else was done for years.

The control of disease by a specific medicine (chemotherapy) was in its infancy. In fact, a person couldn’t even cure a headache safely and
effectively for acetylsalicylic acid, commonly known as aspirin, wasn’t yet in wide use. You say there were fewer headaches in 1902? Well, maybe.

Though medicine was beginning to learn how to immunize humans against diseases by preparing serums made of weak or dead germs cultured in the bodies of animals, it was many years before such diseases as diphtheria were brought to bay. Yet today there are doctors who have never seen a case of diphtheria or typhoid fever!

While the mysterious X rays had been named in 1895 by Roentgen and first used in the treatment of cancer by Emil Grubbe shortly afterwards, they were still looked upon with much suspicion by conservative doctors in 1902. Later the infinitesimal rays were to save millions suffering from countless diseases and eventually they were used to treat diseases such as cancer, brain tumor, hyperthyroidism and leukemia.

A person suffering from a mental illness, or even a physical disease of mental origin (now called psychosomatic), was totally out of luck. He didn’t even have the meager comfort of understanding. Psychiatry still was engaged in classifying the types of mental illnesses. The first work of Sigmund Freud, pathfinder of the intricate mental processes which govern us in both sickness and health barely had been published. None of the controversial storms concerning the relationship of sickness to the mind yet had shaken the medical profession. And, of course, none of the physical treatments for mental illnesses, such as electric shock, even had been dreamed of.

If you were crazy, you were crazy. That’s all, brother, and you were put away in an institution which did nothing for you except provide guards to watch you closely. Or, if you kept complaining about symptoms for which doctors couldn’t find any physical basis, most likely you’d be shrugged off as a malingerer or a neurotic. Today it’s acknowledged that many organic diseases can be traced to emotional causes.

Before 1900 and for some time after, medicine was practiced as an art, not a science. Doctors based their treatments on what they learned from older doctors, whose greatest education was obtained in the school of experience.

In contrast to the 19th century, modern medicine doesn’t guess. Medical laboratories test drugs sometimes for years before releasing them for use.
But a good scientific reason has to be advanced before any testing occurs. This doesn't mean that today’s findings are not the result of insight. Many great discoveries have occurred because of successful “hunches.”

The laboratory methods of the “pure” scientists began to come into their own early in the 20th century. The result was that the first 51 years of this century - particularly the last 25 - zoomed into a revolution which affected you, me and our children more than any series of revolutions, wars or discoveries ever has affected the human race.

Probably the most dramatic of the new methods of science to fight disease with chemicals came in 1909 when Paul Ehrlich in Germany announced his magic bullet 606, or Salvarsan, would destroy the deadly spirochetes that caused syphilis. This was indeed a monumental discovery. As revolutionary as the new magic bullet was, the treatment generally was long and costly, and it wasn’t until the widespread use of penicillin in the 1940s that the treatment of syphilis was simplified.

By that time, however, syphilis - like many other diseases such as tuberculosis - had ceased to be a great public menace because of widespread public-health education in prevention and prompt treatment.

Equally famous in medical history was the discovery by Doctors Banting and Best in 1921 that insulin, a hormone secreted by the pancreas, could control diabetes. Until then there had been no treatment for the disease. Millions had died because of their bodies’ mysterious inability to absorb, or “burn,” sugar. According to estimates, nearly 500,000 persons in the U. S. alone are diabetic - without knowing it. About the same number do know it. Today diabetics can live normal lives, thanks to the miracle of insulin.

In 1926 Doctors Minot and Murphy discovered a half pound of liver daily would control most cases of pernicious anemia, a dread blood and nerve disease which had been fatal until then. Today we know the substance in the liver which set the red blood and nerve cells right was vitamin B12. Only a few micrograms of this vitamin will supplant the raw liver needed for control of pernicious anemia.

Use of the first “wonder” drugs in the early 1930s touched off a cycle of amazing cures. Beginning with sulfanilamide and continuing with the antibiotics, penicillin and the newer aureomycin and terramycin, these
drugs did more to provide medicine with effective tools of treatment than any other methods in the preceding 500 years.

Sir Alexander Fleming discovered penicillin in 1929. Not until 10 years later were its curative qualities demonstrated on human beings. Since most readers of Popular Mechanics want to know how and why anything works, here is the best explanation the physiologists give as to how the antibiotics work: Germs have to combine with red blood cells or other cells of the body in order to produce their deadly reaction. The molecules of the sulfa or the earth drugs such as penicillin imitate our body cells to such an extent they trap the germ cells into combining with them instead of our cells.

The discovery of chlorophyll as a wound healer (it’s 2% times faster in this respect than penicillin) and deodorant deserves mention. In late 1951 proof by Dr. Gustav Rapp at Loyola University of Chicago that regular use of chlorophyll in a dentifrice would prevent or curb most simple gum troubles threatens to deal a staggering blow to the diseases which are responsible for many false teeth. Chlorophyll operates on gums as on wounds; it prevents the bacteria and enzymes which cause decay from uniting with the tissues.

Modern dentistry has followed medicine in scientific research. A good example of how science paid off in dentistry is discovery of the value of sodium fluoride. Added to drinking water or applied by a dentist, this hardens the teeth and cuts children’s cavities about half.

The modern medical practitioner relies more and more on machines to diagnose and treat diseases. These machines range from the gigantic 450-million-volt synchrocyclotron at the University of Chicago to the common blood-pressure machine used by your family doctor. The synchrocyclotron is being used for basic research and is expected to answer many questions concerning the biochemistry of our cells.

The “isotron” at Northwestern University, a marvel of electronic science with its rows of intricate tubes and circuits, is being used to pin-point brain tumors. It is the first clinical machine to utilize atomic energy in medicine.

The suspected brain-tumor victim is first injected with radioactive material which has a special affinity for tumor tissue. When the hot atoms reach
the site they emanate atomic discharges which, checked and recorded by the isotron, reveal the site of the tumor.

I was the only writer to see this first successful use of the atom to fight disease. I felt the occasion was more significant to mankind than the atom-bomb explosion which wiped out 100,000 human lives.

The development of the “clinitron,” a machine which vastly speeds up blood analysis, makes possible easy testing for diabetes, our eighth-greatest killer.

A machine using terrific supersonic vibrations has disintegrated gallstones in animals and may prove effective in human beings. This machine, as a therapeutic measure, is also in wide use in Europe.

Artificial hearts and kidneys have been developed which already are responsible for saving many lives.

A more familiar example of machines in medicine is the electrocardiograph. This records the electrical impulses from the heart, telling the specialist how the heart is behaving. Similarly, the electroencephalograph takes the electrical pulse of the brain. These findings are invaluable in diseases like epilepsy or schizophrenia since the brain-wave machine can distinguish normal brain patterns from abnormal.

What of the future? What can we expect of medicine within our lifetimes?

Today, infectious diseases nearly are conquered. Even tuberculosis, the leading cause of death as late as 1910, is no longer a great menace. Medical men predict the white plague will be a rarity in 20 years. Now our worst foes are the old-age diseases: Heart and blood-vessel disorders, cancer and the neuroses produced by the strain of living in our exciting, exacting era.

Here’s the newest in what probably concerns you the most—your heart. First of all, heart surgery has advanced to a point where operations can be performed while an artificial heart pumps blood. The most difficult of heart operations can be done with a minimum of risk.

Furthermore, Dr. Richard Krasno at the University of Illinois has developed an instrument, the “flicker photometer,” which will not only call the shots
on various types of heart disease but actually will predict whether you are likely to suffer from cardiovascular troubles. The instrument is based on a patient’s response to the flickering of light. The tiny capillaries in one’s eyes apparently reflect impending heart and blood-vessel diseases.

In the same field, Dr. John Gofman and others at the University of California have theorized that the substance cholesterol may be the villain in cases of hardening or aging of the arteries. Cholesterol deposits on the walls of the arteries force the heart to pump harder to keep blood circulating. Gofman found that by reducing the cholesterol intake (fatty foods, primarily) the stuff could be kept from laying its deadly deposit on the arterial walls.

The answer to the country’s No. 2 destroyer, cancer, may come more quickly than most doctors thought possible even a year ago. Today, early recognition and prompt treatment with X rays, radium and surgery are saving millions. Yet 200,000 continue to die yearly from cancer in the U. S. Other treatments offering promise of control for certain types of cancer are injections of hormones and immunization.

Discovery that ACTH and cortisone give amazing relief in some types of arthritis, a disease affecting 7.5 million persons in the U. S., opened an exciting field. ACTH, derived from the pituitary gland, is a substance which stimulates the adrenal glands to produce cortisone. Recently, it has been found that hydrocortisone, rather than cortisone, is a true hormone and even more spectacular results have been achieved.

Cortisone dramatically reduces the symptoms of many diseases in addition to arthritis. In pneumonia, for instance, when given cortisone, sufferers are relieved of almost all symptoms including fever, coughing and others produced by the body’s reactions to the pneumonia germs. The patient may feel well though the germs are still in there pitching for all they’re worth. This teaches an important lesson to scientists. In many diseases, it’s the body’s allergic reaction to germs that kills the patient, not the germs themselves!

What about our century’s particular sickness—neurosis? Almost everybody has that in varying degrees and manifestations. To most, it’s evidenced by despondency, anxiety or feeling of insecurity. Happiness or peace of mind is as important to our bodies as penicillin is for specific diseases. Yet it’s obvious that we can’t all go to expensive psychiatrists.
The outlook for a quick, easy cure is hopeful, at least for 70 percent of us neurotics. The man who introduced shock therapy for the insane, Dr. L. J. Meduna, has come up with another device for curing psychoneuroses. It’s carbon-dioxide gas. Breathed twice a week for several weeks, it’s been amazingly effective in producing permanent cures, Doctor Meduna reports. I personally can report that his patients are extremely enthusiastic about CO2 therapy and the doctor’s findings have been supported by studies at the Veterans Administration in Chicago.

How can the common soda-water gas, carbon dioxide, achieve the fantastic result of curing your neurosis? It does it by suppressing the harmful, neurotic stimulations which infiltrate our brain cells. CO2 raises the brain cells’ ability to resist these abnormal stimulations.

Almost equally miraculous is the treatment of the truly insane with histamine injections. Based on the theory that insane people suffer from too little oxygen in the brain cells, the new histamine treatment which opens up the arteries is producing cures in schizophrenic and other mental disorders. Sometimes, in stubborn cases, histamine is used along with the electro-shock treatment.

So we see that medicine - now the science dedicated to the prolongation of human life as well as treatment of its afflictions - swept like a 50-year typhoon across the records of mankind. Disease, which frequently has struck down man in his prime of life, is being conquered.
DON'T EVER MAKE the mistake of longing for the good old days—at least not in medicine. If you were born 50 years ago, the chances are you're alive today because you were born naturally strong and lucky. It isn't likely that the medicine of that period did much to save you for medicine was just learning to be scientific, which is another way of saying effective.

If medical progress hadn't advanced your life expectancy, last year you'd have been slated to die at the age of 49! In 1902 there

Instead of being trundled about in tanks, life-sustaining oxygen is now piped into some hospital rooms
were few diseases that could be cured; today there are few diseases that cannot be cured if treated in time.

Fifty years ago childhood diseases—diphtheria, scarlet fever, measles and whooping cough—were exacting terrible tolls. The doctors were nearly powerless. They had to let the diseases run their courses, keeping the patients as comfortable as possible. If children escaped these dread diseases, there was practically everything else in the book ready to ambush them before they grew up. The average age of adults dying in 1902 was only 30. Today this has been advanced to nearly 70!

Tuberculosis, malaria, pneumonia, syphilis, typhoid fever, typhus fever, diabetes, pernicious anemia, meningitis and cancer yearly claimed millions of victims even in "civilized" countries. Methods of antisepsis were not practiced as they are today; many patients died from infections contracted at the operating table; many died from shock.

Blood transfusion was almost unknown until 1912 and it was much later before it was generally practiced. Of course, such refinements as the matching of blood were little known; likewise, making counts of red and white corpuscles to diagnose disease, a practice now routine.

Vitamins were unknown of, the first being isolated around 1918. The first hormones—vital secretions of the ductless glands—had been used in treating thyroid deficiencies in 1891 but little else was done for years.

JUNE 1952
From patient's reactions to flickering light of a photometer, above left, a doctor can detect even the likelihood of cardiovascular troubles. The tiny capillaries in the eyes reflect impending diseases. Above, an electroencephalograph, a device that can distinguish normal from abnormal brain patterns, is helpful in diagnosing epilepsy and schizophrenia.

Guided by a counter which picks up gamma radiation from radioactive iodine that collects in thyroid glands, device below traces glands' size and shape. A normal gland is “pictured” on the opposite page.
Building up more knowledge of the human brain, this equipment studies physiological aspects of its cells.

The control of disease by a specific medicine (chemotherapy) was in its infancy. In fact, a person couldn't even cure a headache safely and effectively for acetysalicylic acid, commonly known as aspirin, wasn't yet in wide use. You say there were fewer headaches in 1902? Well, maybe.

Though medicine was beginning to learn how to immunize humans against diseases by preparing serums made of weak or dead germs cultured in the bodies of animals, it was many years before such diseases as diphtheria were brought to bay. Yet today there are doctors who have never seen a case of diphtheria or typhoid fever!

While the mysterious X rays had been named in 1895 by Roentgen and first used in the treatment of cancer by Emil Grubbe shortly afterwards, they were still looked upon with much suspicion by conservative doctors in 1902. Later the infinitesimal rays were to save millions suffering from countless diseases and eventually they were used to treat diseases such as cancer, brain tumor, hyperthyroidism and leukemia.

A person suffering from a mental illness, or even a physical disease of mental origin (now called psychosomatic), was totally out of luck. He didn't even have the meager comfort of understanding. Psychiatry still was engaged in classifying the types of mental illnesses. The first work of Sigmund Freud, pathfinder of the intricate mental processes which govern us in both sickness and health barely had been published. None of the controversial storms concerning the relationship of sickness to the mind yet had shaken the medical profession. And, of course, none of the physical treatments for mental illnesses, such as electric

Sketch of the "brain" of device, left, that outlines size and shape of thyroid glands

Heavy concentration of pen strokes, caused by greater gamma radiation from iodine, forms picture of the thyroid glands
Deep-therapy X-ray, 25 million volts of it, is delivered by the University of Illinois betatron for treating cancer victims. Below, another cancer fighter is this General Electric device using radioactive cobalt to combat deep cases of the dreaded disease shock, even had been dreamed of.

If you were crazy, you were crazy. That’s all, brother, and you were put away in an institution which did nothing for you except provide guards to watch you closely. Or, if you kept complaining about symptoms for which doctors couldn’t find any physical basis, most likely you’d be shrugged off as a malingerer or a neurotic. Today it’s acknowledged that many organic diseases can be traced to emotional causes.

Before 1900 and for some time after, medicine was practiced as an art, not a science. Doctors based their treatments on what they learned from older doctors, whose greatest education was obtained in the school of experience.

In contrast to the 19th century, modern medicine doesn’t guess. Medical laboratories test drugs sometimes for years before releasing them for use. But a good scientific reason has to be advanced before any testing occurs. This doesn’t mean that today’s findings are not the result of insight. Many great discoveries have occurred because of successful “hunches.”

The laboratory methods of the “pure” scientists began to come into their own early in the 20th century. The result was that the first 51 years of this century—particularly the last 25—zoomed into a revolution which affected you, me and our children more than any series of revolutions, wars or discoveries ever has affected the human race.

Probably the most dramatic of the new methods of science to fight disease with chemicals came in
1909 when Paul Ehrlich in Germany announced his magic bullet 606, or Salvarsan, would destroy the deadly spirochete that caused syphilis. This was indeed a monumental discovery. As revolutionary as the new magic bullet was, the treatment generally was long and costly, and it wasn't until the widespread use of penicillin in the 1940s that the treatment of syphilis was simplified.

By that time, however, syphilis — like many other diseases such as tuberculosis — had ceased to be a great public menace because of widespread public-health education in prevention and prompt treatment.

Equally famous in medical history was the discovery by Doctors Banting and Best in 1921 that insulin, a hormone secreted by the pancreas, could control diabetes. Until then there had been no treatment for the disease. Millions had died because of their bodies' mysterious inability to absorb, or "burn," sugar. According to estimates, nearly 500,000 persons in the U.S. alone are diabetic — without knowing it. About the same number do know it. Today diabetics can live normal lives, thanks to the miracle of insulin.

In 1926 Doctors Minot and Murphy discovered a half pound of liver daily would control most cases of pernicious anemia, a dread blood and nerve disease which had been fatal until then. Today we know the substance in the liver which set the red blood and nerve cells right was vitamin B₁₂. Only a few micrograms of this vitamin will supplant the raw liver needed for control of pernicious anemia.

Use of the first "wonder" drugs in the early 1930s touched off a cycle of amazing cures. Beginning with sulfanilamide and continuing with the antibiotics, penicillin and the newer aureomycin and terramycin, these drugs did more to provide medicine with effective tools of treatment than any other methods in the preceding 500 years.

Sir Alexander Fleming discovered penicillin in 1929. Not until 10 years later were its curative qualities demonstrated on human beings. Since most readers of *Popular Mechanics* want to know how and why anything works, here is the best explanation the physiologists give as to how the antibiotics work: Germs have to combine with red blood cells or other cells of the body in order to produce their deadly reaction. The molecules of the sulfa or the earth drugs such as penicillin imitate our body cells to such an extent they trap the germ cells into combining with them instead of our cells.

The discovery of chlorophyll as a wound healer (it's 2½ times faster in this respect than penicillin) and deodorant deserves

(Continued to page 234)

Fountain Brush

Using the same solution over and over again, a fountain brush cleans oily, greasy or dirty parts. With the solution flowing through its nylon bristles, the brush dislodges particles while the solution floats them away. The solvent, clean at all times, is filtered twice before it is pumped through the brush. Only three gallons of solution are needed for a steady flow. Another tank holding 2½ gallons of solution can be used for soaking parts. The unit generally is placed on the workbench and plugged into any 115-volt electric outlet.

Submarine "Speedometer"

Although the details are still secret, the Navy has revealed a new instrument that accurately measures a submarine's speed and distance traveled. These factors are now recorded by dead-reckoning analyzers that indicate latitude and longitude, from which position and speed are figured. The device was developed at the University of Cincinnati's Science Research Laboratory.

Do You Remember . . .

... When photographers made flash shots with a tray of powder held high above their heads? When flash photography was so dangerous every camera case included a first-aid kit for burns? When exposures were judged by eye and a photographer might mention he used a lens opening "about the size of a dime?" Two of America's foremost authorities on photography take a long and fascinating look at its development in an Anniversary Feature in July. The illustrations include some of the finest photographs ever made.

JUNE 1952 115
From Pills to Penicillin
(Continued from page 115)

mention. In late 1951 proof by Dr. Gustav Rapp at Loyola University of Chicago that regular use of chlorophyll in a dentifrice would prevent or curb most simple gum troubles threatens to deal a staggering blow to the diseases which are responsible for many false teeth. Chlorophyll operates on gums as on wounds; it prevents the bacteria and enzymes which cause decay from uniting with the tissues.

Modern dentistry has followed medicine in scientific research. A good example of how science paid off in dentistry is discovery of the value of sodium fluoride. Added to drinking water or applied by a dentist, this hardens the teeth and cuts children's cavities about half.

The modern medical practitioner relies more and more on machines to diagnose and treat diseases. These machines range from the gigantic 450-million-volt synchrocyclotron at the University of Chicago to the common blood-pressure machine used by your family doctor. The synchrocyclotron is being used for basic research and is expected to answer many questions concerning the biochemistry of our cells.

The "isotron" at Northwestern University, a marvel of electronic science with its rows of intricate tubes and circuits, is being used to pin-point brain tumors. It is the first clinical machine to utilize atomic energy in medicine.

The suspected brain-tumor victim is first injected with radioactive material which has a special affinity for tumor tissue. When the hot atoms reach the site they emanate atomic discharges which, checked and recorded by the isotron, reveal the site of the tumor.

I was the only writer to see this first successful use of the atom to fight disease. I felt the occasion was more significant to mankind than the atom-bomb explosion which wiped out 100,000 human lives.

The development of the "clinitron," a machine which vastly speeds up blood analysis, makes possible easy testing for diabetes, our eighth-greatest killer.

A machine using terrific supersonic vibrations has disintegrated gallstones in animals and may prove effective in human beings. This machine, as a therapeutic measure, is also in wide use in Europe.

Artificial hearts and kidneys have been developed which already are responsible for saving many lives.

A more familiar example of machines in medicine is the electrocardiograph. This records the electrical impulses from the

(Continued to page 236)
heart, telling the specialist how the heart is behaving. Similarly, the electroencephalograph takes the electrical pulse of the brain. These findings are invaluable in diseases like epilepsy or schizophrenia since the brain-wave machine can distinguish normal brain patterns from abnormal.

What of the future? What can we expect of medicine within our lifetimes?

Today, infectious diseases nearly are conquered. Even tuberculosis, the leading cause of death as late as 1910, is no longer a great menace. Medical men predict the white plague will be a rarity in 20 years. Now our worst foes are the old-age diseases: Heart and blood-vessel disorders, cancer and the neuroses produced by the strain of living in our exciting, exacting era.

Here's the newest in what probably concerns you the most—your heart. First of all, heart surgery has advanced to a point where operations can be performed while an artificial heart pumps blood. The most difficult of heart operations can be done with a minimum of risk.

Furthermore, Dr. Richard Krasno at the University of Illinois has developed an instrument, the "flicker photometer," which will not only call the shots on various types of heart disease but actually will predict whether you are likely to suffer from cardiovascular troubles. The instrument is based on a patient's response to the flickering of light. The tiny capillaries in one's eyes apparently reflect impending heart and blood-vessel diseases.

In the same field, Dr. John Gofman and others at the University of California have theorized that the substance cholesterol may be the villain in cases of hardening or aging of the arteries. Cholesterol deposits on the walls of the arteries force the heart to pump harder to keep blood circulating. Gofman found that by reducing the cholesterol intake (fatty foods, primarily) the stuff could be kept from laying its deadly deposit on the arterial walls.

The answer to the country's No. 2 destroyer, cancer, may come more quickly than most doctors thought possible even a year ago. Today, early recognition and prompt treatment with X rays, radium and surgery are saving millions. Yet 200,000 continue to die yearly from cancer in the U.S. Other treatments offering promise of control for certain types of cancer are injections of hormones and immunization.

Discovery that ACTH and cortisone give amazing relief in some types of arthritis, a disease affecting 7.5 million persons in the U.S., opened an exciting field. ACTH, derived from the pituitary gland, is a substance which stimulates the adrenal glands.
to produce cortisone. Recently, it has been found that hydrocortisone, rather than cortisone, is a true hormone and even more spectacular results have been achieved.

Cortisone dramatically reduces the symptoms of many diseases in addition to arthritis. In pneumonia, for instance, when given cortisone, sufferers are relieved of almost all symptoms, including fever, coughing and others produced by the body's reactions to the pneumonia germs. The patient may feel well though the germs are still in there pitching for all they're worth. This teaches an important lesson to scientists. In many diseases, it's the body's allergic reaction to germs that kills the patient, not the germs themselves!

What about our century's particular sickness—neurosis? Almost everybody has that in varying degrees and manifestations. To most, it's evidenced by despondency, anxiety or feeling of insecurity. Happiness or peace of mind is as important to our bodies as penicillin is for specific diseases. Yet it's obvious that we can't all go to expensive psychiatrists.

The outlook for a quick, easy cure is hopeful, at least for 70 percent of us neurotics. The man who introduced shock therapy for the insane, Dr. L. J. Meduna, has come up with another device for curing psychoneuroses. It's carbon-dioxide gas. Breathed twice a week for several weeks, it's been amazingly effective in producing permanent cures, Doctor Meduna reports. I personally can report that his patients are extremely enthusiastic about CO₂ therapy and the doctor's findings have been supported by studies at the Veterans Administration in Chicago.

How can the common soda-water gas, carbon dioxide, achieve the fantastic result of curing your neurosis? It does it by suppressing the harmful, neurotic stimulations which infiltrate our brain cells. CO₂ raises the brain cells' ability to resist these abnormal stimulations.

Almost equally miraculous is the treatment of the truly insane with histamine injections. Based on the theory that insane people suffer from too little oxygen in the brain cells, the new histamine treatment which opens up the arteries is producing cures in schizophrenic and other mental disorders. Sometimes, in stubborn cases, histamine is used along with the electroshock treatment.

So we see that medicine—now the science dedicated to the prolongation of human life as well as treatment of its afflictions—swept like a 50-year typhoon across the records of mankind. Disease, which frequently has struck down man in his prime of life, is being conquered.